Bayesian Clustering of Functional Data Using Local Features

نویسندگان

  • Adam Suarez
  • Subhashis Ghosal
چکیده

The use of exploratory methods is an important step in the understanding of data. When clustering functional data, most methods have used traditional clustering techniques on a vector of estimated basis coefficients, assuming that the underlying signal functions live in the L2-space. Bayesian methods use models which imply the belief that some observations are realizations from some signal plus noise models with identical underlying signal functions. The method we propose differs in this respect: we employ a model that does not assume that any of the signal functions are truly identical. We cluster each signal coefficient using conditionally independent Dirichlet process priors, which leads to exact matching of local features, represented by coefficients in a multiresolution wavelet basis. We then demonstrate the method using two datasets from different fields to show broad application potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Functional clustering by Bayesian wavelet methods

We propose a nonparametric Bayes wavelet model for clustering of functional data. The wavelet-based methodology is aimed at the resolution of generic global and local features during clustering and is suitable for clustering high dimensional data. Based on the Dirichlet process, the nonparametric Bayes model extends the scope of traditional Bayes wavelet methods to functional clustering and all...

متن کامل

Gender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model

Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014